

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2014

GCE CHEMISTRY - CH1

SUMMER 2014 MARK SCHEME

SECTION A

Q.1	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶				
Q.2	carbon-12 / ¹² C				
Q.3	any example e.g. [iron for Haber process / manufacture of ammonia vanadium(V) oxide in Contact process / manufacture of sulfuric acid platinum / palladium / rhodium in catalytic converters / to remove toxic gases from exhaust fumes nickel in hydrogenation of alkenes / unsaturated oils				
Q.4		[1] [1]			
Q.5	enthalpy changes = -110				
Q.6	²³⁴ Th (1) ²³⁴ Pa (1) (award 1 mark for 2 correct symbols)	[2]			
Q.7	Ea ₂ marked, at lower energy than Ea ₁ , and portion to right labelled as molecules the	[1] at [1]			

Section A Total [10]

SECTION B

Q.8	(a)	same i	number of protons and electrons (1)		
		0, 1 and 2 neutrons (1) [2]			
	(b)	(i)	3 energy levels between $n=2$ and $n=\infty$ becoming closer together first gap must be < that between $n=1$ and $n=2$	[1]	
		(ii)	any arrow pointing upwards (1)		
			from $n = 1$ to $n = \infty$ (1)	[2]	
	(c)	(i)	visible	[1]	
		(ii)	(not correct because) Balmer series corresponds to energy transition involving $n=2$ (1)	ns	
			for ionisation energy need Lyman series / energy transitions involvin $n=1 \ (1)$	ng [2]	
	(d)	(i)	$Q(g) \rightarrow Q^{+}(g) + e / accept any symbol$	[1]	
		(ii)	Group 6	[1]	
		(iii)	In T there is more shielding (1)		
			The outer electron is further from the nucleus (1)		
			The increase in shielding outweighs the increase in nuclear charge / there is less effective nuclear charge (1)	[3]	
			Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC	[1]	

Total [14]

Q.9 (a) (i) line drawn that is deflected less by magnetic field [1]

(ii) increase strength of the magnetic field allow decrease charge on charged plates [1]

(b) (i) 1+ (1) ${}^{37}\text{Cl} - {}^{37}\text{Cl}$ (1) ${}^{37}\text{Cl}_2^+$ (2) [2]

(ii) line drawn as m/z 72 (1)

ratio height 6 (1) allow ½ square tolerance [2]

(c) (i) % H = 0.84 (1) C: H: CI = 10.04 / 12: 0.84 / 1.01: 89.12 / 35.5 (1) = 0.84: 0.83: 2.51 = 1: 1: 3 empirical formula = CHCl₃ (1) [3]

(ii) the relative molecular mass / M_r / molar mass [1]

(iii) right hand / largest / heaviest m/z peak from mass spectrum [1]

Total [11]

- Q.10 (a) (a reaction in which) the rate of the forward reaction is equal to the rate of the backward reaction [1]
 - (b) goes darker / more brown (1)
 because the (forward) reaction has a +ve ΔH / is endothermic (1)
 goes paler / less brown (1)
 because there are more moles / molecules on RHS (1)
 no change (because catalysts do not affect the position of an equilibrium) (1)
 - (c) (i) moles $N_2H_4 = 14000/32.04 = 437.0$ (1) this produces $437.0 \times 3 = 1311$ moles of gas (1) $volume = 1311 \times 24 = 3.15 \times 10^4 \text{ dm}^3 \text{ (1)} \qquad [minimum 2 \text{ sf}] \qquad [3]$
 - (ii) (large volume of) gas produced [1]
 - (d) (i) an acid is a proton / H⁺ donor [1]
 - (ii) $\rightarrow NO_2^- + H_3O^+$ [1]
 - (iii) sulfuric acid is behaving as the acid / nitric acid is behaving as a base (1)as it donates a proton / as it accepts a proton (1) [2]

Total [14]

[5]

Total [17]

Answer has suitable structure (1)

Q.12 (a) to increase rate of reaction / to increase surface area [1]

(b)
$$MgCO_3 + 2HCI \rightarrow MgCl_2 + CO_2 + H_2O$$
 (ignore state symbols) [1]

(c) rate starts fast and gradually slows (1)

because concentration becomes less so fewer collisions (per unit time) / less frequent collisions / lower probability of collisions (1)

at time =
$$17/18 \text{ min rate} = 0 (1)$$
 [3]

- (d) all the solid would all have disappeared / if more carbonate is added further effervescence is seen [1]
- (e) (i) volume $CO_2 = 200 \text{ cm}^3$ (1) moles $CO_2 = 200 / 24000 = 0.008333 = \text{moles MgCO}_3$ (1) [minimum 2 sf] [2]

(ii) mass MgCO₃ =
$$0.008333 \times 84.3 = 0.702 \text{ g}$$
 (1)
% MgCO₃ = $\frac{0.702}{0.889} \times 100 = 79.0\% / 79\%$ [2]

- (e) carbon dioxide is soluble in water / reacts with water (1)volume collected less therefore % / moles of MgCO₃ less (1)[2]
- (f) use of 40.3 and 84.3 (1) $atom\ economy = 40.3 / 84.3 \times 100 = 47.8\% \ \ (1)$ [2]

Total [14]

Section B Total [70]